

Vertikale Geräte Serie SCHOOLAIR-V

Kreuz-Gegenstrom Wärmerückgewinner

SCHOOLAIR-V, Filter

Justierfuß

Geprüft nach VDI 6022

Zu- und Abluftgerät mit Umschaltmöglichkeit auf Sekundärluftbetrieb, inklusive Wärmerückgewinner und Wärmeübertrager zum vertikalen Einbau vor der Brüstung

Anschlussfertiges dezentrales Lüftungsgerät zur komfortablen Raumtemperierung und Be- und Entlüftung von Räumen wie z. B. Unterrichtsräumen

- Akustisch optimierte EC-Ventilatoren mit niedriger spezifischer Ventilatorleistung, nach EN 13779 SFP = 1
- Plattenwärmeübertrager als Wärmerückgewinner (Luft/Luft) mit elektromotorisch angetriebenem Bypass (100 % Auf-Zu)
- Alternativ Rotationswärmeübertrager als Wärmerückgewinner (Luft/Luft) mit elektro-motorisch angetriebenen stetigem Bypass (100 % Auf-Zu)
- Wärmeübertrager zum Heizen und Kühlen als 2- oder 4-Leiter-System
- Gerätegrundfläche ~ 0,24 m²
- Werkzeugloser Filterwechsel
- Kondensatwanne mit oder ohne vorbereiteten Kondensatanschluss
- Motorisierte Absperrklappen, stromlos geschlossen
- Automatische Umschaltung auf Sekundärluftbetrieb (luftqualitätsabhängig)

Optionale Ausstattung und Zubehör

- Speziell auf dezentrale Lüftungsgeräte ausgelegte und modular aufgebaute Regelung FSL-CONTROL II
- Bedarfsabhängige Außenluftmenge und abhängig vom Regelkonzept sind freie Kühlung und Nachtauskühlung möglich
- Variable Wärmerückgewinnung
- Pulverbeschichtung nach RAL 9005 (schwarz)

Serie		Seite
SCHOOLAIR-V	Allgemeine Informationen	SA-V - 2
	Funktion	SA-V - 4
	Technische Daten	SA-V - 6
	Schnellauslegung	SA-V - 7
	Ausschreibungstext	SA-V - 9
	Bestellschlüssel	SA-V - 10
	Varianten	SA-V - 11
	Abmessungen und Gewichte	SA-V - 12
	Einbaubeispiele	SA-V - 17
	Einbaudetails	SA-V - 18
	Grundlagen und Definitionen	SA-V - 19

Anwendung

Anwendung

- Be- und Entlüftung von Räumen, bis ca. 6 m
 Baumtiefe
- 2- oder 4-Leiter-Wärmeübertrager ermöglichen eine komfortable Raumtemperierung
- Luftströmung im Raum nach dem Misch-Quellluft-Prinzip
- Energetische Vorteile von Wasser als Medium zum Heizen und Kühlen werden genutzt
- Für Neubau-, Sanierungs- und Revitalisierungsprojekte geeignet
- Vertikaler Einbau an der Innenfassade bzw. raumseitigen Außenwand
- Typische Einsatzfälle: Unterrichts- und Aufenthaltsräume in Schulen und Kindertagesstätten, Besprechungsräume, Büroräume mit hohen Luftwechselraten

Besondere Merkmale

- Dezentrales Lüftungsgerät mit hohen Volumenströmen
- Motorisierte Absperrklappen für Außen- und Fortluft, stromlos geschlossen, um unkontrollierte Luftströmungen zu verhindern
- Bedarfsabhängige Be- und Entlüftung durch Überwachung der Raumluftqualität mit entsprechender Regelung möglich
- Geräteabhängig: Kreuzstrom,-Kreuzgegenstrom-Plattenwärmeübertrager mit motorisch angetriebenen Bypass (100 % Auf-Zu oder variabel) oder Rotationswärmeübertrager als Wärmerückgewinnung

- Wärmeübertrager als 2- oder 4-Leiter-System mit Überwürfen G½", flachdichtend
- Entspricht den hygienischen Anforderungen der VDI 6022
- Filterklasse: Außenluft F7 und Abluft G3
- Werkzeugloser Filterwechsel mit Schnellverschlüssen
- Kondensatwanne mit oder ohne Kondensatanschluss
- Durch die kompakte Bauweise für Sanierungsprojekte besonders gut geeignet
- Automatische Umschaltung auf Sekundärluftbetrieb (nur in Verbindung mit Luftqualitätssensor) erfolgt sofern die Raumluftqualität (gemessen am z. B. geräteinternen VOC-Sensor) innerhalb der zuvor definierten Grenzwerte liegt. Das Gerät startet immer im energetisch sinnvolleren Sekundärluftbetrieb
- Geräteabhängig ist der Einsatz eines Enthalpie-Wärmerückgewinners möglich

Nenngrößen

- SCHOOLAIR-V 2-Leiter-System: 397 × 2160 × 359 mm (B × H × T)
- SCHOOLAIR-V 4-Leiter-System: 397 x 2350 x 359 mm (B x H x T)
- SCHOOLAIR-V-1800 2-Leiter-System, 4-Leiter-System: 600 x 1800 x 359 mm (B x H x T)
- SCHOOLAIR-V-HE 2-Leiter-System, 4-Leiter-System: 600 × 2000 × 408 mm (B × H × T)
- SCHOOLAIR-V-HV 2-Leiter-System, 4-Leiter-System: $600 \times 2200 \times 408$ mm (B × H × T)

Beschreibung

Varianten

- SCHOOLAIR-V-2L Volumenstrom: 150, 200, 250, 320 m³/h mit Kreuzstrom-Plattenwärmerückgewinner
- SCHOOLAIR-V-4L Volumenstrom: 150, 200, 250, 320 m³/h mit Kreuzstrom-Plattenwärmerückgewinner
- SCHOOLAIR-V-1800 Volumenstrom: 150, 230, 280, 350 m³/h mit Kreuzstrom-Plattenwärmerückgewinner
- SCHOOLAIR-V-HE Volumenstrom: 150, 200, 240, 360 m³/h mit Kreuzgegenstrom-Plattenwärmerückgewinner (alternativ

- Enthalpie möglich)
- SCHOOLAIR-V-HV Volumenstrom: 200, 300, 400, 500 m³/h mit Rotationswärmerückgewinner

Ausführung

- Pulverbeschichtet RAL 9005, schwarz

Zubehör

 Holz-Geräteverkleidung mit integrierten Lüftungsgittern für Zu- und Abluft

Ergänzende Produkte

SCHOOLAIR-V

- Speziell auf dezentrale Lüftungsgeräte ausgelegtes modulares Regelsystem FSL-CONTROL II
- Anschlussschläuche

Konstruktionsmerkmale

- 2 energieeffiziente EC-Ventilatoren mit niedriger spezifischer Ventilatorleistung, nach EN 13779 SFP = 1
- Zuluft strömt im unteren Gerätebereich frontseitig nach dem Misch-Quellluft-Prinzip in den Raum
- Abluft wird im oberen Gerätebereich abgesaugt

Materialien und Oberflächen

- Gehäuse, Filterdeckel, Ventilatoren und Stellfüße aus verzinktem Stahlblech
- Wärmeübertrager aus Kupferrohren und Aluminiumlamellen
- Wärmerückgewinner (WRG) aus Aluminium oder Kunststoff (geräteabhängig)
- Gehäuse pulverbeschichtet, schwarz (RAL 9005)
- F7-Filtermedium aus nassfestem Glasfaserpapier (Eurovent-zertifiziert)

- Auskleidung mit Mineralwolle nach DIN 4102
 Baustoffklasse A mit aufkaschiertem
 Glasseidengewebe vor Abrieb durch strömende Luft bis max. 20 m/s geschützt
- Dichtbänder aus geschlossenporigem Material

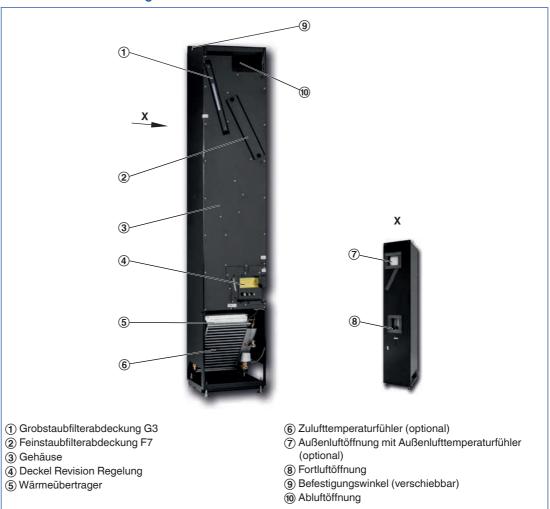
Normen und Richtlinien

- Fassadenlüftungsgeräte Serie SCHOOLAIR-V sind konform zur VDI 6035 und zur VDMA 24390
- Hygienezertifikate nach VDI 6022
- Heiz-/Kühlmedium entspricht der VDI 2035
- Erfüllt alle Anforderungen der EU-Verordnung 1253/2014 (ErP-Richtlinie)

Instandhaltung

- Es gilt die VDI 6022 Blatt 1 Hygienische Anforderungen an raumlufttechnische Anlagen
- Wärmeübertrager kann bei Bedarf mit Industriestaubsaugern abgesaugt werden
- Reinigung ist mit haushaltsüblichen, nicht aggressiven Reinigern möglich

Funktionsbeschreibung


Dezentrale Zu- und Abluftgeräte be- und entlüften den Raum und decken die Kühl- und Heizlast ab. Die Außenluft wird von einem EC-Radialventilator angesaugt und strömt zunächst durch die motorisierte Absperrklappe und den Filter, Klasse F7.

Anschließend durch den Wärmerückgewinner, der in energetisch sinnvollen Betriebssituationen und zum Geräteschutz umgangen werden kann.

Bevor die Zuluft quellluftartig in den Raum strömt wird sie bei Bedarf im Wärmeübertrager noch geheizt bzw. gekühlt.

Die Abluft strömt durch ein G3 Filtervlies, bevor sie durch den Wärmerückgewinner, den Abluftventilator und die motorisierte Absperrklappe als Fortluft ins Freie gefördert wird. Zusätzlich kann bei guter Raumluftqualität auf reinen Sekundärluftbetrieb geschaltet werden.

Schematische Darstellung SCHOOLAIR-V

Lüftungsschema SCHOOLAIR-V (Regelung optional)

- SEH Fortluft Einzelraum
- SRO Außenluft Einzelraum
- SRS Zuluft Einzelraum
- SET Abluft Einzelraum
- SEC Sekundärluft Einzelraum
- 1 Außenlufttemperaturfühler (optional)
- 2 Absperrklappe
- 3 Feinstaubfilter F7
- 4 EC-Ventilator

- 5 Wärmerückgewinnung
- 6 Schalldämpfer
 - 7 Lufterhitzer
 - 8 Luftkühler
- 9 Zulufttemperaturfühler (optional)
- 10 Bypassklappe mit Stellantrieb
- 11 Luftqualitätsfühler (optional)
- 12 Grobstaubfilter G3

Breite	397 mm (2- bzw. 4-Leiter), 600 mm (2- bzw. 4-Leiter, 1800, HE und HV)
Höhe	1800 mm (2- bzw. 4-Leiter, 1800-Version), 2000 mm (HE-Version), 2160 mm (2-Leiter), 2200 mm (HV-Version), 2350 mm (4-Leiter)
Tiefe	359 mm (2- bzw. 4-Leiter, 1800-Version) 408 mm (2- bzw. 4-Leiter HE-
	und HV-Version)
Außenluftvolumenstrom	Bis 500 m ³ /h
Zuluftvolumenstrom	Bis 500 m ³ /h
Kühlleistung	Bis 1685 W
Heizleistung	Bis 6020 W
Maximaler Betriebsdruck wasserseitig	6 bar
Maximale Betriebstemperatur	75 °C
Schallleistungspegel	31 – 50 dB(A)
Versorgungsspannung	230 V AC ±10 %, 50/60 Hz
Gewicht	Ab 80 ka

SCHOOLAIR-V-0 (Auslegungsbeispiele)

Zuluftvolumenstrom	m³/h	150	200	250	320
Außenluftvolumenstrom	m³/h	150	200	250	320
Gesamtkühlleistung	W	ab 680	ab 900	ab 1130	ab 1440
Raumkühlleistung	W	ab 401	ab 534	ab 668	ab 844
Temperatur der Luft im Gerät	°C	32	32	32	32
rel. Feuchte	%	40	40	40	40
Wassergehalt der tr. Luft	g/kg	11,9	11,9	11,9	11,9
Zulufttemperatur	°C	18	18	18	18,1
Kondensat	g/h	0	0	0	0
Kaltwassermenge	l/h	80	130	190	250
Wassereintrittstemperatur	°C	16	16	16	16
Wasseraustrittstemperatur	°C	23,3	22	21,1	21
Druckverlust wasserseitig	kPa	<3	<5	<8>	<12
Gesamtheizleistung	W	2780	3700	4490	5470
Raumheizleistung	W	862	1136	1303	1422
Temperatur der Luft im Gerät	°C	-12	-12	-12	-12
Zulufttemperatur	°C	37,2	37,0	35,6	33,3
Warmwassermenge	l/h	90	150	200	250
Wassereintrittstemperatur	°C	60	60	60	60
Wasseraustrittstemperatur	°C	32,9	38,5	40,4	40,9
Druckverlust wasserseitig	kPa	<3	<5	<7	<11
Schallleistungspegel L _{WA}	dB(A)	31	36	41	46
Schalldruckpegel inkl. 8 dB Systemdämpfung	dB(A)	23	28	33	38

SCHOOLAIR-V (1800 mm) (Auslegungsbeispiele)

Zuluftvolumenstrom	m³/h	150	230	280	350
Außenluftvolumenstrom	m³/h	150	230	280	350
Gesamtkühlleistung	W	684	1060	1310	1590
Raumkühlleistung	W	406	630	786	935
Temperatur der Luft im Gerät	°C	32,0	32,0	32,0	32,0
rel. Feuchte	%	40,0	40,0	40,0	40,0
Wassergehalt der tr. Luft	g/kg	11,9	11,9	11,9	11,9
Zulufttemperatur	°C	17,9	17,8	17,6	18,0
Kondensat	g/h	0	0	0	0
Kaltwassermenge	l/h	60	120	180	210
Wassereintrittstemperatur	°C	16	16	16	16
Wasseraustrittstemperatur	°C	25,8	23,6	22,3	22,5
Druckverlust wasserseitig	kPa	1,1	3,8	8	10,4
Gesamtheizleistung	W	2950	4230	4900	5630
Raumheizleistung	W	907	1122	1150	1005
Temperatur der Luft im Gerät	°C	-12,0	-12,0	-12,0	-12,0
Zulufttemperatur	°C	40,1	36,6	34,3	30,6
Warmwassermenge	l/h	100	170	200	210
Wassereintrittstemperatur	°C	60	60	60	60
Wasseraustrittstemperatur	°C	34,4	38,4	38,8	36,8
Druckverlust wasserseitig	kPa	4,8	12,3	16,5	18,1
Schallleistungspegel L _{WA}	dB(A)	31	38	42	47
Schalldruckpegel inkl. 8 dB Systemdämpfung	dB(A)	23	30	34	39

SCHOOLAIR-V-HE (Auslegungsbeispiele)

Zuluftvolumenstrom	m³/h	150	200	240	360
Gesamtheizleistung (WRG nicht berücksichitigt)	W	2960	3820	4520	6020
Raumheizleistung	W	671	781	890	675
Temperatur der Luft im Gerät	°C	-16	-16	-16	-16
Zulufttemperatur	°C	35,4	33,7	33,1	27,5
Kondensatmenge	g/h	510	690	830	1180
Warmwassermenge	l/h	75	110	150	200
Wassereintrittstemperatur	°C	60	60	60	60
Wasseraustrittstemperatur	°C	26	30	34	34
Druckverlust wasserseitig	kPa	2,9	5,7	10,0	16,7
Schallleistungspegel L _{WA}	dB(A)	36	40	43	50
Schalldruckpegel inkl. 8 dB Systemdämpfung	dB(A)	28	32	35	42

SCHOOLAIR-V-HV (Auslegungsbeispiele)

Zuluftvolumenstrom	m³/h	200	300	400	500
Gesamtheizleistung (WRG berücksichitigt)	W	1300	1960	2530	3150
Raumheizleistung	W	508	772	962	1169
Temperatur der Luft im Gerät	°C	10,0	10,0	10,0	10,0
Zulufttemperatur	°C	28,6	28,7	28,2	28,0
Warmwassermenge	l/h	35	60	85	120
Wassereintrittstemperatur	°C	60	60	60	60
Wasseraustrittstemperatur	°C	27,8	31,7	34,1	37,2
Druckverlust wasserseitig	kPa	2	5	9,5	17

Lüftungsgerät mit Zu- und Abluftfunktion, Umschaltmöglichkeit auf Sekundärluftbetrieb (luftqualitätsabhängig), mit Wärmeübertrager und Wärmerückgewinnung zum vertikalen Einbau vor der Brüstung.

Besondere Merkmale

- Dezentrales Lüftungsgerät mit hohen Volumenströmen
- Motorisierte Absperrklappen für Außen- und Fortluft, stromlos geschlossen, um unkontrollierte Luftströmungen zu verhindern
- Bedarfsabhängige Be- und Entlüftung durch Überwachung der Raumluftqualität mit entsprechender Regelung möglich
- Geräteabhängig: Kreuzstrom,-Kreuzgegenstrom-Plattenwärmeübertrager mit motorisch angetriebenen Bypass (100 % Auf-Zu oder variabel) oder Rotationswärmeübertrager als Wärmerückgewinnung
- Wärmeübertrager als 2- oder 4-Leiter-System mit Überwürfen G½", flachdichtend
- Entspricht den hygienischen Anforderungen der VDI 6022
- Filterklasse: Außenluft F7 und Abluft G3
- Werkzeugloser Filterwechsel mit Schnellverschlüssen
- Kondensatwanne mit oder ohne Kondensatanschluss
- Durch die kompakte Bauweise für Sanierungsprojekte besonders gut geeignet
- Automatische Umschaltung auf Sekundärluftbetrieb (nur in Verbindung mit Luftqualitätssensor) erfolgt sofern die Raumluftqualität (gemessen am z. B. geräteinternen VOC-Sensor) innerhalb der zuvor definierten Grenzwerte liegt. Das Gerät startet immer im energetisch sinnvolleren Sekundärluftbetrieb
- Geräteabhängig ist der Einsatz eines Enthalpie-Wärmerückgewinners möglich

Materialien und Oberflächen

- Gehäuse, Filterdeckel, Ventilatoren und Stellfüße aus verzinktem Stahlblech
- Wärmeübertrager aus Kupferrohren und Aluminiumlamellen
- Wärmerückgewinner (WRG) aus Aluminium oder Kunststoff (geräteabhängig)
- Gehäuse pulverbeschichtet, schwarz (RAL 9005)

- F7-Filtermedium aus nassfestem Glasfaserpapier (Eurovent-zertifiziert)
- Auskleidung mit Mineralwolle nach DIN 4102
 Baustoffklasse A mit aufkaschiertem
 Glasseidengewebe vor Abrieb durch
 strömende Luft bis max. 20 m/s geschützt
- Dichtbänder aus geschlossenporigem Material

Ausführung

Pulverbeschichtet RAL 9005, schwarz

Technische Daten

- Breite: 397 mm (2- bzw. 4-Leiter), 600 mm (2bzw. 4-Leiter, 1800, HE und HV)
- Höhe: 1800 mm (2- bzw. 4-Leiter, 1800-Version), 2000 mm (HE-Version), 2160 mm (2-Leiter), 2200 mm (HV-Version), 2350 mm (4-Leiter)
- Tiefe: 359 mm (2- bzw. 4-Leiter, 1800-Version)408 mm (2- bzw. 4-Leiter HE- und HV-Version)
- Außenluftvolumenstrom: Bis 500 m³/h
- Zuluftvolumenstrom: Bis 500 m³/h
- Kühlleistung: Bis 1685 W
- Heizleistung: Bis 6020 W
- Maximaler Betriebsdruck: 6 bar
- Maximale Betriebstemperatur: 75 °C
- Schallleistungspegel: 31 50 dB(A)
- Versorgungsspannung: 230 V AC $\pm 10~\%,\,50/$ 60 Hz
- Gewicht: Ab 80 kg
- Elektrische Dimensionierung: SCHOOLAIR-V-2L: 136 VA, SCHOOLAIR-V-4L: 117 VA, SCHOOLAIR-V-1800: 141 VA, SCHOOLAIR-V-HE: 208 VA, SCHOOLAIR-V-HV: 495 VA
- Leistungsaufnahme bei Nennluftmenge: SCHOOLAIR-V-2L: 44 W, SCHOOLAIR-V-4L: 45 W, SCHOOLAIR-V-1800: 46 W, SCHOOLAIR-V-HE: 42 W, SCHOOLAIR-V-HV: 147 W

Auslegungsdaten

Aussenluft	
- V	[m ³ /h]
Zuluft	
- V	[m³/h]
Raumkühlleistung	
- Q	[W]
Raumheizleistung	
- Q	[W]
- L _{WA}	[dB(A)]

Dezentrale Lüftungsgeräte sind technisch hochwertige Produkte, die viele Möglichkeiten bei der Gerätekonfektionierung bieten. Zur detaillierten Klärung der Gerätespezifikation für Ihren Einsatzfall wenden Sie sich bitte an eine TROX Niederlassung.

SCHOOLAIR-V

SCHOOLAIR - V - 0 - 2 / KM / 1590 x 650 x 420 / R / MA - T / B / V / Z / A / HV - R - 0,4 / KV - R - 0,4 / LT - 0,4 / LT

1 Serie

SCHOOLAIR-V Vertikales Lüftungsgerät

2 Variante

Keine Eintragung: Standard

HE Hoher Wärmerückgewinnungsgrad

HV Hoher Volumenstrom

3 Wärmeübertrager

2 2-Leiter4 4-Leiter

4 Kondensatwanne

Keine Eintragung: Ohne

Mit Kondensatanschluss

5 Abmessungen [mm]

 $B \times H \times T$

397 × 2160 × 359 (2-Leiter)

397 x 2350 x 359 (4-Leiter)

604 x 1800 x 359 (2-, 4-Leiter 1800-Version)

600 × 2000 × 408 (2-, 4-Leiter HE-Version)

600 x 2200 x 408 (2-, 4-Leiter HV-Version)

6 Regelung

Keine Eintragung: Ohne

R Mit

7 Regelungsfunktion

MA Master (Raummodul und Regelmodul)

SL Slave (Regelmodul)

8 Echtzeituhr

Keine Eintragung: Ohne

Nur Master

T Mit

9 Schnittstelle

Keine Eintragung: Ohne

Nur Master

B BACnet MS/TP oder Modbus RTU

L LonWorks LON-FTT10

10 Luftqualitätsfühler

Keine Eintragung: Ohne

Nur Master

V VOC-Sensor

11 Zulufttemperaturfühler

Z Mi

12 Außenlufttemperaturfühler

Keine Eintragung: Ohne

Nur Master

A Mit

13 Heizventil

HV Mit

14 Rücklaufverschraubung Heizkreis

R Mit

15 kVS-Wert Heizventil

0,25 0,40

0,40

1,00

1,00

F0,50

16 Kühlventil

Nur Vierleiter-Systeme

KV IVIIT

7 Rücklaufverschraubung Kühlkreis

R Mit

18 kVS-Wert Kühlventil

0,25

0,40

0,63

1,00

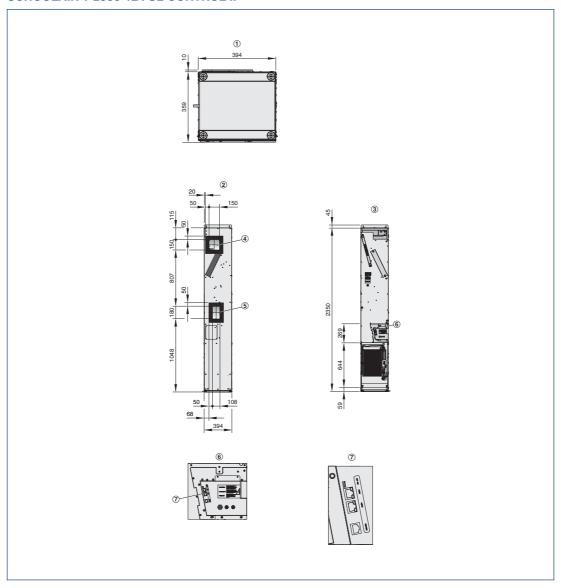
F0,50

Produktbeispiele

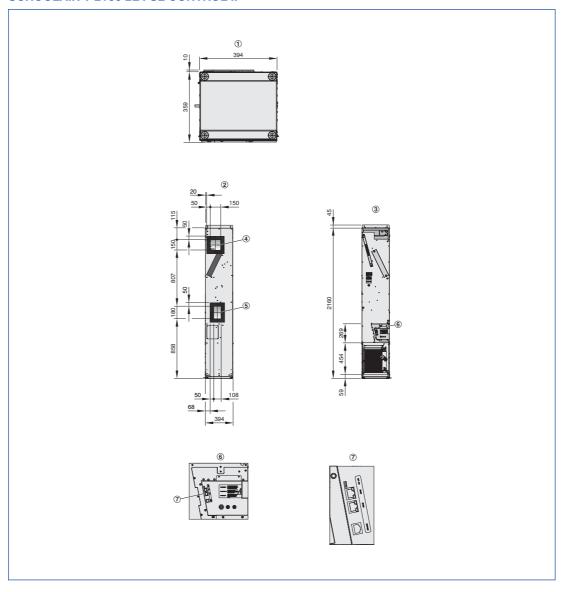
SCHOOLAIR-V 2L

SCHOOLAIR-V 4L

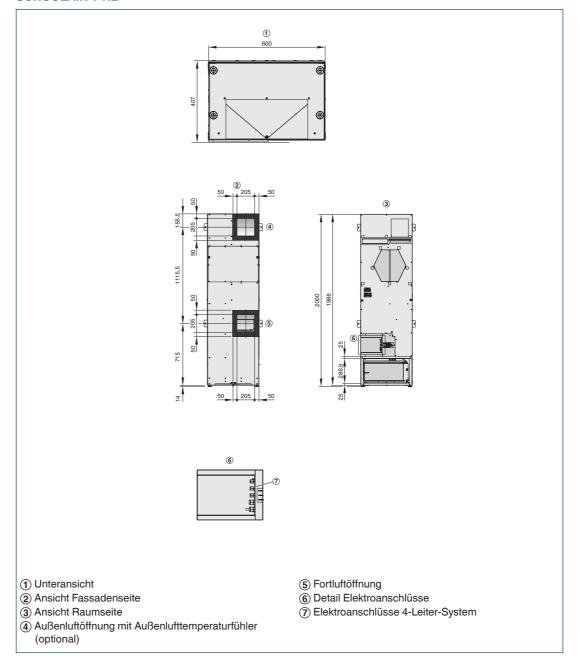
SCHOOLAIR-V-1800

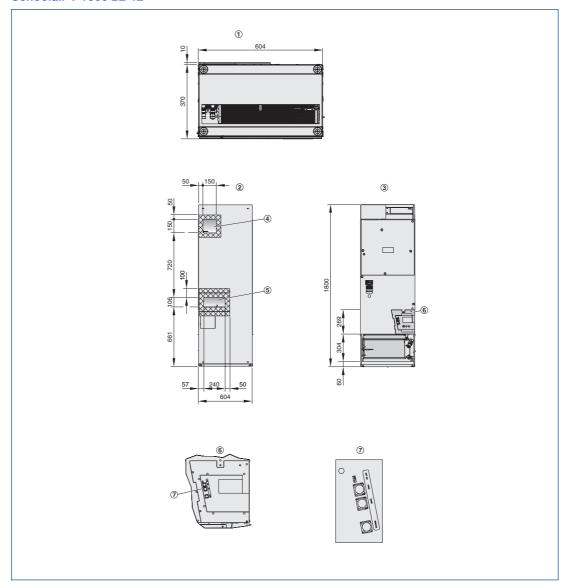


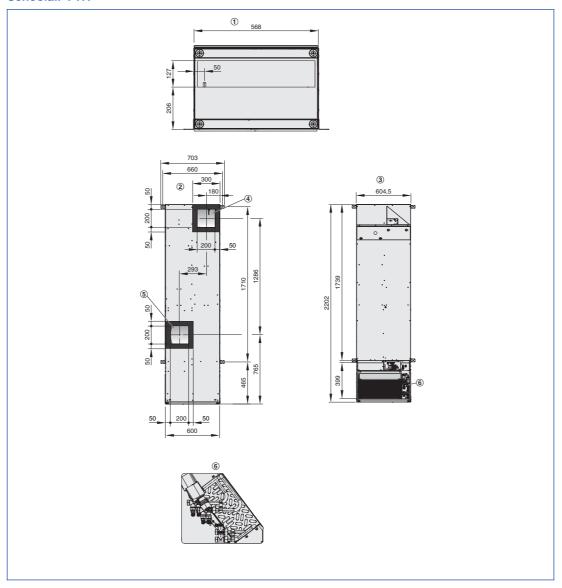
SCHOOLAIR-V-HV



Gewicht 80 kg


SCHOOLAIR-V-2350 4L FSL-CONTROL II


SCHOOLAIR-V-2160 2L FSL-CONTROL II


SCHOOLAIR-V-HE

Schoolair-V-1800 2L-4L

Schoolair-V-HV

Einbaubeispiel

Einbaubeispiel

Einbaubeispiel

Einbau und Inbetriebnahme

- Aufstellung auf dem Fußboden vertikal an der Fassade bzw. Außenwand
- Ausgleich von Rohbautoleranzen über die 4 Justierfüße (+40 mm)
- 1 verstellbarer Befestigungswinkel zur Verschraubung mit dem Baukörper
- Witterungsschutz der Ansaug- und Fortluftöffnung erfolgt als kundenseitige Leistung
- Verbindung zur Außenluftansaugung erfolgt über zwei kundenseitig in der Fassade bzw.
 Außenwand vorgesehene Lüftungsöffnungen, empfohlener Weise mit Gefälle nach außen
- Freier Querschnitt der Lüftungsöffnungen 0,05 m² je Öffnung
- Einbau und Erstellung aller Anschlüsse und Lieferung des Befestigungs-, Verbindungs- und Dichtungsmaterials erfolgen kundenseitig
- Wasseranschlüsse für Vor- und Rücklauf befinden sich, vom Raum aus gesehen, rechts
- Kundenseitig ist auf die Möglichkeit zur Entleerung und Entlüftung zu achten
- Elektroanschluss befindet sich, vom Raum aus gesehen, im unteren Bereich auf der rechten Seite
- Die bauseitige Brüstungsverkleidung darf auf der Gerätevorderseite Wartungsarbeiten sowie Gerätemontage bzw. -demontage nicht einschränken

SCHOOLAIR-V

Grundlagen und Definitionen

Definitionen

$L_{WA}[dB(A)]$

Schallleistungspegel

t_{Pr} [°C]

Primärlufttemperatur

t_{wv} [C°]

Wasservorlauftemperatur kühlen/heizen

Raumtemperatur

t_{AN} [C°]

Ansaugtemperatur der Sekundärluft

Q_{Pr} [W]

Thermische Leistung Primärluft

Thermische Leistung gesamt

$Q_w[W]$

Thermische Leistung Wasser kühlen/heizen

\dot{V}_{Pr} [l/s/m³/h]

Primärluftvolumenstrom

V_w [l/h]

Wasservolumenstrom kühlen/heizen

Volumenstrom

$\Delta t_W [K]$

Temperaturdifferenz Wasser

Δp_w [kPa]

Wasserseitiger Druckverlust

Δp_t [Pa]

Gesamtdruckverlust luftseitig

$\Delta t_{Pr} = t_{Pr} - t_{R} [K]$

Temperaturdifferenz zwischen

Primärlufttemperatur und Raumtemperatur

 $\Delta t_{RWV} = t_{WV} - t_{R} [K]$ Temperaturdifferenz zwischen Wasservorlauf und Raumtemperatur

Δt_{Wm-Ref} [K]

Temperaturdifferenz mittlere Wassertemperatur und Referenztemperatur

Hauptabmessungen

L_N [mm]

Nennlänge

Misch-Quelllüftung

Die Zuluft strömt mit mittlerer Geschwindigkeit von 1,0 - 1,5 m/s fassadennah in den Raum. Durch die Induktionswirkung werden die Geschwindigkeiten bereits kurz nach dem Lufteintritt in den Raum abgebaut, so dass sich die Zuluft im Kühlfall über die gesamte Bodenfläche quellluftartig ausbreitet. An Wärmequellen wie Menschen und Geräten bildet sich durch natürliche Konvektion eine Auftriebsströmung, so dass primär in diesen Bereichen die Luft ausgetauscht wird.

Schematische Darstellung Misch-Quell-Lüftung

Grundlagen und Definitionen

SCHOOLAIR-V

Wärmeübertrager

Der maximale wasserseitige Betriebsdruck für alle Wärmeübertrager beträgt 6 bar.

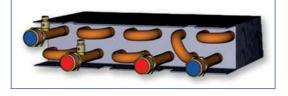
Die maximale Wasservorlauftemperatur (Heizkreis) für alle Wärmeübertrager beträgt 75 °C, beim Anschluss mit flexiblen Schläuchen empfehlen wir die Vorlauftemperatur auf 55 °C zu begrenzen. Andere Drücke und Temperaturen auf

Anfrage!

Die minimale Wasservorlauftemperatur (Kühlkreislauf) empfehlen wir auf 16 °C zu begrenzen, damit keine dauerhafte Taupunktunterschreitung erfolgt. Bei Geräten mit Kondensatwanne kann die Wasservorlauftemperatur auf 15 °C reduziert werden.

Wärmeübertrager mit 2-Leiter-System

Luft-Wasser-Systeme mit 2-Leiter-Wärmeübertrager können zum Heizen oder Kühlen verwendet werden. Ein sogenannter Change-over-Betrieb ermöglicht es, das mit allen Geräten an einem Wasserkreislauf im Sommer nur gekühlt und im Winter nur geheizt werden kann.


Wärmeübertrager 2-Leiter-System

Wärmeübertrager mit 4-Leiter-System

Luft-Wasser-Systeme mit 4-Leiter-Wärmeübertrager können zum Heizen und Kühlen flexibel verwendet werden. In der Übergangszeit kann es z. B. vorkommen, dass ein Büroraum morgens noch geheizt wird und am Nachmittag gekühlt werden muss.

Wärmeübertrager 4-Leiter-System

