

Homogenes Lochbild

Quellluftdurchlässe QL-WR

QL-WR

Gehäuse mit rundem Querschnitt, allseitig ausströmend, für große Räume und Industriebereiche

Quellluftdurchlässe in runder Bauform

- Nenndurchmesser 200 630 mm, Nennhöhen 600 2000 mm
- Volumenstrombereich 32 1529 l/s oder 116 5504 m³ /h
- Homogenes Lochbild
- Runder Luftleitungsanschluss
- Luftleitungsanschluss oben und unten
- Luftverteilblech mit Düsen, jeweils angeformter Schöpfzunge

Optionale Ausstattung und Zubehör

- Sichtseite in Farben nach RAL Classic oder NCS
- Volumenstrom-Messeinrichtung

Produktdatenblatt

QL-WR

Allgemeine Informationen	2	Bestellschlüssel	8
Funktion	3	Abmessungen	9
Technische Daten	6	Sicherheitshinweis	10
Schnellauslegung	6	Legende	11
Ausschreibungstext	7		

Allgemeine Informationen

Anwendung

- Quellluftdurchlässe der Serie QL-WR als Zuluftdurchlass für große Räume und Industriebereiche
- Gestaltungselement für Bauherren und Architekten mit besonderen Ansprüchen an Architektur und Design
- Für freistehende Einzelaufstellung
- Induktionsarme Luftströmung mit niedriger
 Ausströmgeschwindigkeit für turbulenzarme Quelllüftung
- Sehr hohe Luftqualität im Aufenthaltsbereich
- Zugfreie und ökonomische Klimatisierung auch großer Hallen, wie Auditorien und Industriehallen, mit mehreren gleichmäßig verteilten Quellluftdurchlässen
- Für konstante und variable Volumenströme
- Für Zulufttemperaturdifferenzen von –6 bis –1 K

Varianten

- QL-WR-R*: Runder Anschlussstutzen
- QL-WR-RU: Anschlussstutzen unten
- QL-WR-RO: Anschlussstutzen oben

Nenngrößen

- ØD: 200, 250, 315, 400, 500, 630 mm
- H: 600, 1000, 1500, 2000 mm

Anbauteile

 M: Volumenstrom-Messeinrichtung, nur bei homogenem Lochbild

Bauteile und Eigenschaften

- Gehäuse mit Anschlussstutzen
- Luftverteilblech mit Düsen
- Düsen mit angeformter Schöpfzunge
- Frontdurchlass

Konstruktionsmerkmale

 Anschlussstutzen passend für runde Luftleitungen nach EN 1506 oder EN 13180

Einbau und Inbetriebnahme

 Bei Quelllüftung die Abluftdurchlässe vorzugsweise im oberen Raumbereich, oberhalb der Aufenthaltszone, anordnen

Normen und Richtlinien

 Schallleistungspegel des Strömungsgeräusches gemessen nach EN ISO 5135

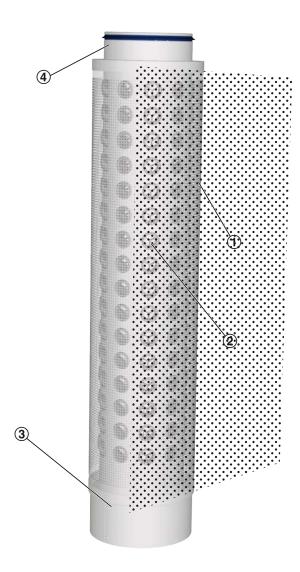
Instandhaltung

- Wartungsfrei, da aufgrund der Konstruktion und der verwendeten Materialien keine Abnutzung erfolgt
- Überprüfung und Reinigung nach VDI 6022

2 / 11 PD-11/2021 - /de

Funktion

Quellluftdurchlässe lassen die Zuluft lufttechnischer Anlagen mit niedriger Geschwindigkeit und in Bodennähe in den Raum strömen. Die turbulenzarme Strömung breitet sich über die gesamte Bodenfläche aus. An Wärmequellen wie Menschen und Geräten bildet sich eine Auftriebsströmung, sodass primär in diesen Bereichen die Luft ausgetauscht wird.


Auch große Hallen, wie Auditorien und Industriehallen, lassen sich mit mehreren gleichmäßig verteilten Quellluftdurchlässen zugfrei und ökonomisch klimatisieren.

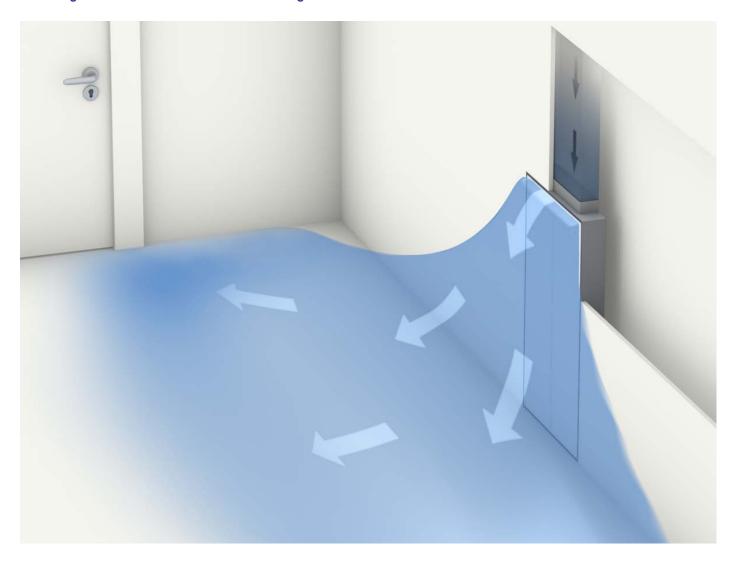
Die Quelllüftung ist von niedrigen Luftgeschwindigkeiten bei geringen Turbulenzen geprägt. Die Luftqualität im Aufenthaltsbereich ist sehr hoch.

Die Strömungsart Quelllüftung ist ausschließlich für den Kühlbetrieb konzipiert. Die maximale Zulufttemperturdifferenz beträgt –6 K.

Quellluftdurchlässe der Serie QL-WR enthalten ein Luftverteilblech mit vielen Düsen, diese jeweils mit einer Schöpfzunge versehen, zur gleichmäßigen Verteilung des Zuluftstromes auf die gesamte Durchlassfläche. Der Frontdurchlass aus Lochblech bewirkt eine weitere Homogenisierung der Strömung. Die Zuluft strömt allseitig aus. Eine Volumenstrom-Messeinrichtung (optional) vereinfacht den Volumenstromabgleich zur Inbetriebnahme. Die Abluft muss im oberen Raumbereich, oberhalb der Aufenthaltszone, abgeführt werden.

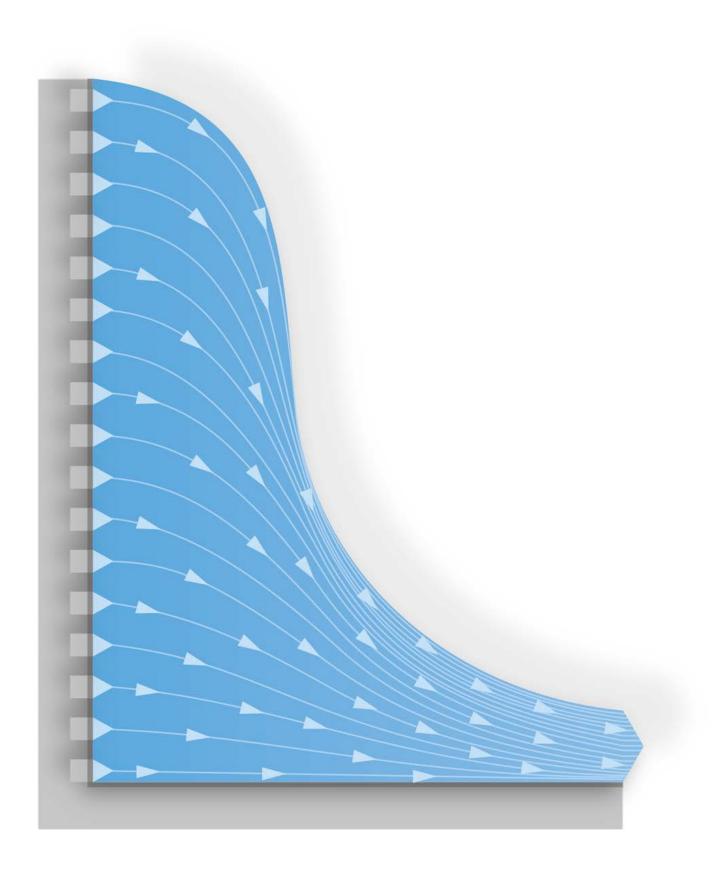
Schematische Darstellung, QL-WR mit rundem Anschlussstutzen oben

3 / 11



PD-11/2021 - /de

- Frontdurchlass
 Düse
- ③ Gehäuse


Luftanschlussstutzen Strömungsbild einer turbulenzarmen Quelllüftung

Strömungsbild einer turbulenzarmen Quelllüftung

Technische Daten

Nenngrößen	200 × 600 – 630 × 2000 mm
Minimaler Volumenstrom, bei 0,1 m/s	32 – 382 l/s oder 116 – 1376 m³/h
Maximaler Volumenstrom, bei 0,4 m/s	129 – 1529 l/s oder 465 – 5504 m³/h
Zulufttemperaturdifferenz	–6 bis −1 K
Schallleistung, bei 0,3/0,4 m/s	Max. 58/69 dB(A)

Schnellauslegung

Die Schnellauslegung gibt einen guten Überblick über die möglichen Volumenströme und die korrespondierenden Schallleistungspegel und Druckdifferenzen.

Die minimalen Volumenströme gelten für eine Ausströmgeschwindigkeit von 0,1 m/s.

Die maximalen Volumenströme gelten für eine Ausströmgeschwindigkeit von 0,4 m/s.

Zu exakten Werten, unter Berücksichtigung aller Parameter, führt die Auslegung mit unserem Auslegungsprogramm Easy Product Finder.

Schnellauslegung Schallleistungspegel, Gesamtdruckdifferenz und Nahzone (Typ QL-WR)

NW	qv [l/s]	qv [m³/h]	v0 m/s	Δp _t [Pa]	LWA [dB(A)]	Lnz
200 × 600 – 1 × 160	33	121	0.1	5	15	0.3
	67	241	0.2	21	35	0.7
	100	362	0.3	47	47	1
	134	482	0.4	84	57	1.3
	73	262	0.1	9	23	0.4
250 × 1000 – 1 × 200	146	525	0.2	36	43	0.9
	219	787	0.3	80	58	1.3
	292	1049	0.4	143	69	1.7
	92	332	0.1	6	17	0.5
315 × 1000 – 1 × 250	184	664	0.2	24	37	0.9
313 ^ 1000 - 1 ^ 230	277	996	0.3	53	50	1.4
	369	1328	0.4	94	60	1.8
	117	423	0.1	4	<15	0.5
400 × 1000 – 1 × 315	235	846	0.2	16	31	1
400 × 1000 = 1 × 313	352	1269	0.3	36	43	1.5
	470	1691	0.4	64	52	2
	180	646	0.1	8	22	0.6
400 × 1500 – 1 × 315	359	1293	0.2	34	43	1.2
400 × 1000 = 1 × 010	539	1939	0.3	76	57	1.7
	718	2585	0.4	135	68	2.3
500 × 1500 – 1 × 400	225	810	0.1	5	15	0.6
	450	1620	0.2	21	35	1.2
	675	2430	0.3	48	48	1.9
	900	3240	0.4	85	58	2.5
500 × 2000 – 1 × 400	303	1090	0.1	9	23	0.7
	606	2180	0.2	36	44	1.4
	908	3270	0.3	80	58	2.1
	1211	4360	0.4	143	69	2.8
630 × 2000 – 1 × 500	382	1376	0.1	6	17	0.7
	764	2752	0.2	24	37	1.5
	1147	4128	0.3	54	50	2.2
	1529	5504	0.4	96	61	3

6 / 11

Die Werte für die Nahzone gelten für eine Zulufttemperaturdifferenz von -6 K

PD-11/2021 - /de

Ausschreibungstext

Dieser Ausschreibungstext beschreibt die generellen Eigenschaften des Produkts. Texte für Varianten generiert unser Auslegungsprogramm Easy Product Finder.

Quellluftdurchlässe für große Räume und Industriebereiche mit besonderen Ansprüchen an Architektur und Design.

Mit allseitiger Ausströmung für turbulenzarme Quelllüftung.

Gehäuse mit rundem Querschnitt zum freistehenden Einbau.

Einbaufertige Komponente, bestehend aus dem Gehäuse mit oben oder unten angeordnetem Anschlussstutzen, einem Luftverteilblech mit Düsen zur gleichmäßigen Luftverteilung und dem Frontdurchlass aus Lochblech. Düsen versehen mit Schöpfzungen. Anschlussstutzen für runde Luftleitungen.

Anschlussstutzen, passend für Luftleitungen nach EN 1506 oder EN 13180.

Schallleistungspegel des Strömungsgeräusches gemessen nach EN ISO 5135.

Varianten

QL-WR-R*: Runder Anschlussstutzen

- QL-WR-RU: Anschlussstutzen unten
- QL-WR-RO: Anschlussstutzen oben

Einbau und Inbetriebnahme

 Bei Quelllüftung die Abluftdurchlässe vorzugsweise im oberen Raumbereich, oberhalb der Aufenthaltszone, anordnen

Auslegungsdaten

q_v [m³/h]

7/11

- Δp_t [Pa]
- L_{WA} Strömungsgeräusch [dB(A)]

PD-11/2021 - /de

Bestellschlüssel

1 Serie

QL Quellluftdurchlass

2 Bauform

WR Wandvorbau rund

3 Anschluss

RO runder Stutzen oben **RU** runder Stutzen unten

4 Ausblasrichtung

O Standard

5 Anbauteile

0 ohne Messeinrichtung (Standard)

M mit Volumenstrom Messeinrichtung (WE-RO, WF-RO, WFT-RO)

6 Nenngröße [mm]

D × H Durchmesser × Höhe

7 Stutzen [mm]

n x d Anzahl Stutzen x Stutzendurchmesser

8 Kanalabdeckung

0 ohne Kanalabdeckung

Bestellbeispiel

QL-WR-RO-0-0-0/400×1000-1×315/0/0/P1/RAL9010

Anschluss Runder Anschlussstutzen oben Design Frontdurchlass Homogenes Lochbild Volumenstrom-Messeinrichtung Ohne

Nenngröße400 × 1000 mm − 1 Stutzen ØD = 315 mmOberfläche SichtseiteRAL 9010, reinweiß, Glanzgrad 50 %

9 Sockel

0 ohne Sockel

\$50 mit Sockel (Höhe: 50) \$60 mit Sockel (Höhe: 60) \$70 mit Sockel (Höhe: 70) \$100 mit Sockel (Höhe: 100) \$150 mit Sockel (Höhe: 150) \$200 mit Sockel (Höhe: 200)

10 Oberfläche Sichtseite

 $\bf 0$ Standard: pulverbeschichtet nach RAL 9010 matt, 60 %

Glanzgrad (BE Standard RAL9011)

P1 pulverbeschichtet nach RAL (andere RAL Farben und

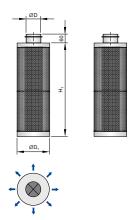
Glanzheitsgrad auf Anfrage)
PS pulverbeschichtet nach NCS

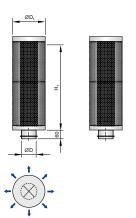
11 Farbe

8 / 11

Nach RAL/Glanzgrad 25 %, 50 %, 60 % Mit Farbton zusammen angeben

RAL 9006 RAL 9006 matt, ca. 60 % Glanzheitsgrad (sämtliche RAL-Farben möglich)


4050-B10G S 4050-B10G matt, ca. 25 % Glanzheitsgrad (sämtliche NCS-Farben möglich)



Abmessungen

QL-WR-RO

QL-WR-RU

Typ QL-WR-R*

Typ QL-VVK-K"				
NW	ØD	ØD₁	H₁	m
	mm	mm	mm	kg
200×600–1×160	158	200	600	8
250×1000–1×200	198	250	1000	11
315×1000–1×250	248	315	1000	15
400×1000–1×315	313	400	1000	22
400×1500–1×315	313	400	1500	27
500×1500–1×400	398	500	1500	32
500×2000–1×400	398	500	2000	45
630×2000–1×500	498	630	2000	60

Sicherheitshinweis

▲ FLAMMWIDRIG!

Legende

B, [mm]

Breite des Frontdurchlasses

B₄ [mm]

Breite eines rechteckigen Anschlussstutzens

ØD [mm]

Außendurchmesser des Anschlussstutzens

ØD, [mm]

Gehäusedurchmesser

T, [mm]

Gehäusetiefe

T, [mm]

Tiefe eines rechteckigen Anschlussstutzens

m [Hz]

Gewicht (Masse)

 L_{wA} [dB(A)]

A-bewerteter Schallleistungspegel

qv [m³/h]; [l/s]

Volumenstrom (nominal)

 v_0 [m/s]

Theoretische Luftgeschwindigkeit bezogen auf die Durchlassfläche im Abstand 0 m vom Durchlass

 L_{nz} [m]

Nahbereich des Quellluftdurchlasses (Nahzone), innerhalb der die Komfortkriterien nicht garantiert sind Ungeachtet der Luftgeschwindigkeit beträgt die Nahzone mindestens 0,5 m Im Abstand Lnz beträgt die Luftgeschwindigkeit maximal 0,2 m/s, gemessen 0,1 m über dem Boden

 Δt_z [m/s]

Zulufttemperaturdifferenz (Zulufttemperatur minus Raumtemperatur)

 $\Delta \mathbf{p}_{t}$ [Pa]

Gesamtdruckverlust (Zuluft)

A_{eff} [m²]

11 / 11

Effektive Luftaustrittsfläche

